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5
ODN1: T;CGTATGTGT;,

Thymine glycol (5,6-dihydroxy-5,6-dihydrothymidine) is a TGT2gGTATGCT
major oxidation product induced by ionizing radiation and
endogenous oxidation of DNA* It is reported that thymine CTGGCCACCTGTCTC
glycol is not strongly mutagerfi€ but efficiently blocks DNA ODN2 : 3éACCGGTGGACAGAG5'

replication either one residue before or at the site of damge. | \N

NMR studies showed that thymine glycol induces significant BpyODN2 : %sacceaTecacacac-L

an_d localized structurz_al change _of duplex DNA,_wlth th_e base ODN3:  SACTGTCTCT,GTG 3 : N

being largely extrahelicdP. Thymine glycol-containing oligo- 3

deoxynucleotides (ODNSs) are usually prepared by oxidation of BpyODN4 : TGACAGAG-L L= —-(CHQ)G—”TO
o]

single strand ODNs with osmium tetroxide or potassium per-
manganate, followed by HPLC separation from other oxidation Figure 2. Sequences for the target and bipyridine-tethered oligonucleo-
productst! Due to the limitation of this oxidation method for tides.
only ODNs containing a single thymine, a different approach
employing enzymatic incorporation of thymine glycol int6 3
end of ODN with terminal deoxynucleotidyl transferase has been
investigated? 1% To develop a conceptually advanced and more
versatile method for the synthesis of thymine glycol-containing
ODN s with high overall efficiency and wide sequence applicabil-
ity, we have investigated site-selective thymine (T) oxidation of
ODNSs with osmium tetroxide in the presence of bipyridine-
tethered complementary ODN. By the use of bipyridine-tethere
ODN, we demonstrated a highly selective modification of a
targeted single thymine into thymine glycol in a 35-mer ODN
containing 14 thymine residués.A combination of this T-
selective oxidation and subsequent hot piperidine treatmen
constitutes a practically useful method for cutting DNA at any
desired T residue of single-stranded DNA.

Most transition metal-mediated oxidation of DNA proceeds
either by hydrogen abstraction from sugar backbone, leading

to direct strand cleavadé,or by one-electron transfer from

G to produce radical cations not only at a proximal G but
also at distal Gs due to the accompanying hole migrafion.
These oxidation methods are not suitable for the synthesis
of ODNs containing a single oxidized nucleobase at desired
sites. Oxidation of ODN with osmium tetroxide is known to
g Pproceed selectively at T residues in a single strand regib.
Coordination of osmium to a bidentate ligand, 'Zhyridine
(Bpy), can accelerate the oxidation by*¥6ld to produce a stable
osmate compleX® These results suggest that T in the vicinity of

t 0smium-bipyridine complex would be oxidized more easily than
those being apart from the complex (Figure 1). The target 35-mer
d(T1:CG T4AT GTgG T10CT12 GGC CAC CThG T22CTo4 CT26G
T2sGT30AT3:G CTss) (ODN1) contains a sequence (& Cos)
complementary to 15-mer d(GAG ACA GGT GGC CA®RN2)

to form a partial duplex possessing single-stranded overhangs of
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10-bases long at both'-3and 3-ends (Figure 2). Bipyridine-
tethered oligonucleotideBpyODN2) was synthesized by a
coupling of modifiedODN2 possessing an aminohexyl linker at
the B-end with (6-(2-pyridyl)-2-pyridyl)methyl (2,5-dioxopyrroli-
dinyloxy)formate. Since the thymine glycol site is piperidine-
labile }® we examined the T oxidation @DN1 in the presence
of BpyODN2 that is followed by PAGE analysis after hot
piperidine treatment.

Oxidation of a partial duplex of'52P-end-labele@®DN1 and
ODN2 with osmium tetroxide and subsequent hot piperidine treat-
ment did not produce any detectable cleavage bands (Figure 3a,
lane 3), implying that oxidation of T residues @DN1—ODN2
with ligand-free osmium tetroxide is in fact negligible. In sharp
contrast, incubation d®DN1—-BpyODN2 with osmium tetroxide
for only 10 min produces a band of less mobility th@DN1
(lane 5, bands shown by X), a cross-linked band between two
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Figure 3. Autoradiograms of a denaturing 15% polyacrylamide/7 M urea
gel used to analyze the oxidation ©DN1 by OsQ in the presence of
BpyODN2. ODN 1 was labeled at either the (a)-%®r (b) 3-end with

32P and annealed witbDN2 or BpyODNZ2 (10 M) in Tris-HCI buffer

(10 mM, pH 7.6) containing NaCl (100 mM) for 12 h at°C. OsQ
(100 mM) was added, and the resulting mixture was incubated &€25
for 10 min. Recovered DNA by ethanol precipitation was analyzed
by electrophoresis with or without piperidine treatment (10% v/v;©0

2 h). Lane 1, T reaction ddDN1 with OsQ; (1 mM) and pyridine (2%
v/v); lane 2, Maxam-Gilbert G+A sequencing reactions; lane 3, after
anealing withODNZ2; lanes 4-6, after anealing witlBpyODNZ2; ODNs

in lanes 3, 5, and 6 were treated with Qs@ll ODNs except in lane 5
were heated with piperidine. A partial base sequend@®R1 is shown

in the middle. The cross-linked band is marked withFor clarity, the
autoradiogram for '3end-labeleddDDNL1 is shown upside down.

oligomers through cyclic osmate formation. Upon heating the
mixture with piperidine, both cross-linked band and the band co-
migrated withODN1 completely disappeared with a concomitant
formation of a distinct cleavage band afsTlane 6)?° Other T
residues in double-stranded and theaifle overhang regions were
not oxidized at all. Furthermore, the cleavage atthat is only
two bases away from§ was also negligible.

To confirm the cleavage at T in thé-8ide overhang region
more definitely, we examined the same oxidation 6#2®-end-
labeledODNL1 (Figure 3b). We detected the cleavage band at
only Toe but not at Bs, Tso, Tzz, OrF Tss (lane 6). These results
showed that among 14 thymine residue©a&iN1 T4 is the sole
site to be oxidized by osmium tetroxide in the presence of
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Figure 4. HPLC profiles for the oxidation of an equimolar mixture of
ODN3 and BpyODN4 (50 uM each) by Os® (100 mM) in Tris-HCI

(10 mM) and NaCl (100 mM). (a) A mixture ddDN3, BpyODN4, and

dA (added as an internal standard, marked with *); (b) incubation with
OsQ, for 10 min; further treatment of the mixture with (c) hot piperidine
(10% v/v) far 2 h at 90°C followed by alkaline phosphatase and (d)
sodium sulfite (50% saturated solutiony & h at 50°C.

HPLC analysis of the oxidized mixture also confirmed the
highly selective oxidation. Upon addition of osmium tetroxide
to duplexODN3—BpyODN4, a new cross-linked peak appeared
with a disappearance of starting oligomers (Figuré®4Jross-
linking of two oligomers through cyclic osmate formation
was confirmed by observing two molecular ions at 6714.06
(caled for [M — H — O], 6714.63) and 6697.97 (calcd for
[M —H — 0], 6698.63) by MALDI-TOF-MS. Treatment of
this mixture with hot piperidine followed by alkaline phos-
phatase produced both d(ACT GTC TC) and d(GTG), indicating
a selective oxidation atglwith a reappearance &pyODNA4.
Chemical yields for the formation of d(ACT GTC TC) and
d(GTG) for average four experiments were 64 and 76%,
respectively, whereaBpyODN4 was recovered in 70% yield.
Treatment of the same mixture with sodium sulfite gave rise to
the formation of thymine glycol (Tg)-containing ODN d(ACT
GTC TCTg GTG) as evidenced by MALDI-TOF-MS (found
3660.60; calcd for [M— H], 3660.41).

The present method for site-specific conversion of thymine to
thymine glycol by osmium oxidation and subsequent sulfite
reduction would be widely applicable to the synthesis of various
thymine glycol-containing ODNSs. The site-specific T cleavage
by osmium oxidation and hot piperidine treatment constitute
a practically useful method for cutting DNA at any desired T
sites of single strands, thus providing a useful tool for DNA

BpyODNZ2. In contrast, we were able to detect the cleavage band manipulation.

at T,; for the ODN containing 5T,6T27T25-3 sequence instead
of 5-TyGo7T2e-3 in ODN1 (Supporting Information). The
selectivity for the oxidation of % and T,; was 93:7. Highly
selective oxidation of J; observed forBpyODNZ2 is primarily
due to the proximity effect of an osmiunbipyridine complex
to Toe2l22

Supporting Information Available: Synthetic procedures for Bpy-
ODN2 and PAGE analysis for T oxidation of an oligomer containing
continued T sequence (PDF). This material is available free of charge
via the Internet at http://pubs.acs.org.

JA0004478

(20) These observations showed that the band comigratedadtk1 in
lane 5 of Figure 3a and 3b corresponds to oxidi@2&N1 containing thymine
glycol at the B position which was produced by hydrolysis of the osmate
complex of the cross-linked product.

(21) The T/ T,7 selectivity was slightly improved by using a tether with
shorter length with concomitant decrease of oxidation efficiency. See
Supporting Information.

(22) For proximity effects on the site selectivity of guanine modification,
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119 7626-7635. (b) Grant, K. B.; Dervan, P. Biochemistry1996 35,
12313-123109.

(23) The oxidation ofODN3 with osmium tetroxide in the presence of
ODN that lacks bipyridine ligand and contains only a primary amino group
at the 5-end was not observed at all under identical conditions.



